Random embeddings of bounded degree trees with optimal spread

Clément Legrand-Duchesne

Jagiellonian University, Kraków

September 22, 2025

Joint work with Alp Müyesser, Paul Bastide

Clément Legrand 1 / 16

Hiking workshop

Clément Legrand 2 / 16

When does $H \subset G$?

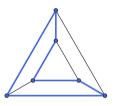
• NP-complete (ex: Hamiltonian cycle)

When does $H \subset G$?

- NP-complete (ex: Hamiltonian cycle)
- What about sufficient conditions?

Dirac 1952

If $\delta(G) \geq n/2$ then G is Hamiltonian



When does $H \subset G$?

- NP-complete (ex: Hamiltonian cycle)
- What about sufficient conditions?

Dirac 1952

If $\delta(G) \ge n/2$ then G is Hamiltonian

Dirac threshold of H

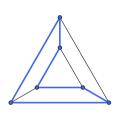
What is the infimum $\delta_{H,n}$ such that $\delta(G) \geq \delta_{H,n} \Rightarrow H \subset G$?

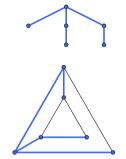
When does $H \subset G$?

- NP-complete (ex: Hamiltonian cycle)
- What about sufficient conditions?

Dirac 1952

If $\delta(G) \geq n/2$ then G is Hamiltonian





Dirac threshold of H

What is the infimum $\delta_{H,n}$ such that $\delta(G) \geq \delta_{H,n} \Rightarrow H \subset G$?

Focus on Hamiltonian cycles and spanning trees of bounded degree

Counting the embeddings

Embedding

Injection $\phi: H \to G$ such that $uv \in E(H) \Rightarrow \phi(u)\phi(v) \in E(G)$

Counting the embeddings

If $\delta(G) \geq \delta_{H,n}$, how many embeddings of H in G?

Counting the embeddings

Embedding

Injection $\phi: H \to G$ such that $uv \in E(H) \Rightarrow \phi(u)\phi(v) \in E(G)$

Counting the embeddings

If $\delta(G) \geq \delta_{H,n}$, how many embeddings of H in G?

Sárközy, Selkow, Szemerédi 2003 and Cuckler, Kahn 2003

If $\delta(\mathcal{G}) \geq \frac{n}{2}$ then at least $n!/2^n$ distinct Hamiltonian cycles

Clément Legrand Some context 4 / 16

Counting the embeddings

Embedding

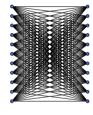
Injection $\phi: H \to G$ such that $uv \in E(H) \Rightarrow \phi(u)\phi(v) \in E(G)$

Counting the embeddings

If $\delta(G) \geq \delta_{H,n}$, how many embeddings of H in G? For which G is this number minimal ?

Sárközy, Selkow, Szemerédi 2003 and Cuckler, Kahn 2003

If $\delta(G) \geq \frac{n}{2}$ then at least $n!/2^n$ distinct Hamiltonian cycles



Random graphs

Erdős-Rényi graph G(n, p)

Keep each edge of K_n independently with probability p

Embedding in a random graph

For what p_n does $\mathbb{P}[H \subset G(n,p_n)] \geq \frac{1}{2}$?

Random graphs

Erdős-Rényi graph G(n, p)

Keep each edge of K_n independently with probability p

Embedding in a random graph

For what p_n does $\mathbb{P}[H \subset G(n, p_n)] \geq \frac{1}{2}$?

Pósa 1962

$$\mathbb{P}[\mathcal{G}(\mathit{n},\log(\mathit{n})/\mathit{n}) \text{ is Hamiltonian}] \xrightarrow[\mathit{n} \to \infty]{} 1$$

Koršunov 1977

Sharp threshold for hamiltonicity

Robustness

Random sparsification G * p

Keep each edge of G with probability p

Embedding in a typical subgraph

For what p_n does $\mathbb{P}[H \subset G * p_n] \geq \frac{1}{2}$ for all G with $\delta(G) \geq \delta_{H,n}$?

Robustness

Random sparsification G * p

Keep each edge of G with probability p

Embedding in a typical subgraph

For what p_n does $\mathbb{P}[H \subset G * p_n] \geq \frac{1}{2}$ for all G with $\delta(G) \geq \delta_{H,n}$?

Krivelevich, Sudakov, 2014

If $\delta(G) \geq n/2$, then $G*(\log(n)/n)$ remains Hamiltonian with good probability

To sum up

Counting the embeddings

If $\delta(G) \geq \delta_{H,n}$, how many embeddings of H in G?

Embedding in a random graph

For what p_n does $\mathbb{P}[H \subset G(n,p_n)] \geq \frac{1}{2}$?

Embedding in a typical subgraph

For what p_n does $\mathbb{P}[H \subset G * p_n] \geq \frac{1}{2}$ for all G with $\delta(G) \geq \delta_{H,n}$?

Unified approach

q-spread embedding

A distribution \mathbb{P} over embeddings $\phi: H \to G$ is *q*-spread if $\forall x_1, \dots x_s \in V(H)$, $\forall y_1, \dots y_s \in V(G)$,

$$\mathbb{P}[\forall i, \phi(x_i) = y_i] \leq q^s$$

Unified approach

q-spread embedding

A distribution \mathbb{P} over embeddings $\phi: H \to G$ is *q*-spread if $\forall x_1, \dots x_s \in V(H)$, $\forall y_1, \dots y_s \in V(G)$,

$$\mathbb{P}[\forall i, \phi(x_i) = y_i] \leq q^s$$

Typically, $q = \frac{C}{n}$

Unified approach

q-spread embedding

A distribution \mathbb{P} over embeddings $\phi: H \to G$ is *q*-spread if $\forall x_1, \dots x_s \in V(H)$, $\forall y_1, \dots y_s \in V(G)$,

$$\mathbb{P}[\forall i, \phi(x_i) = y_i] \leq q^s$$

Typically, $q = \frac{C}{n}$

Other point of view

Randomized algorithm embedding H progressively, with linearly many options at each step

$$\mathbb{P}[\forall i \leq s, \phi(x_i) = y_i] = \mathbb{P}[\phi(x_1) = y_1] \cdots \mathbb{P}[\phi(x_s) = y_s \mid \phi(x_1) = y_1, \dots \phi(x_{s-1}) = y_{s-1}]$$

$$\leq \left(\frac{C}{n}\right)^s$$

Random embedding of an Hamiltonian cycle in K_n

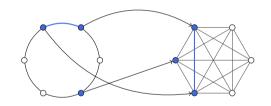
Same as random permutation

Random embedding of an Hamiltonian cycle in K_n

Same as random permutation

$$\forall x_1, \dots x_s \in V(C_n), \forall y_1, \dots y_s \in V(K_n),$$

$$\mathbb{P}[\forall i, \phi(x_i) = y_i]$$



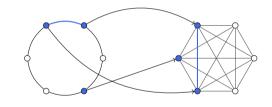
Random embedding of an Hamiltonian cycle in K_n

Same as random permutation

$$\forall x_1, \dots x_s \in V(C_n), \forall y_1, \dots y_s \in V(K_n),$$

$$\mathbb{P}[\forall i, \phi(x_i) = y_i] = \frac{(n-s)!}{n!} \le \left(\frac{e}{n}\right)^s$$

by Stirling's formula



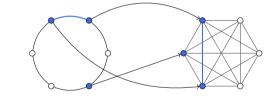
Random embedding of an Hamiltonian cycle in K_n

Same as random permutation

$$\forall x_1, \dots x_s \in V(C_n), \forall y_1, \dots y_s \in V(K_n),$$

$$\mathbb{P}[\forall i, \phi(x_i) = y_i] = \frac{(n-s)!}{n!} \le \left(\frac{e}{n}\right)^s$$

by Stirling's formula



- Same proof for embeddings of spanning trees
- Much harder when G is not a clique

Spreadness implies counting

If there is a q-spread distribution, then for any embedding ϕ_H ,

$$\mathbb{P}[\phi = \phi_H] \le q^{|H|}$$

Hence, # embeddings $\geq q^{-|H|}$

Spreadness implies counting

If there is a q-spread distribution, then for any embedding ϕ_H ,

$$\mathbb{P}[\phi = \phi_H] \le q^{|H|}$$

Hence, # embeddings $\geq q^{-|H|}$

Corollary

If there is a $\left(\frac{C}{n}\right)$ -spread distribution, then G contains at least $\left(\frac{n}{C}\right)^n$ embeddings of H

Application

 $\left(\frac{n}{e}\right)^n$ embeddings of C_n in K_n

Spreadness implies robustness

Kahn-Kalai conjecture 2006

- threshold: $\mathbb{P}(G(n,p) \text{ is Hamiltonian}) \xrightarrow[n \to \infty]{} \begin{cases} 1 & \text{if } p \gg \log(n)/n \\ 0 & \text{if } p \ll \log(n)/n \end{cases}$
- expectation threshold: $\mathbb{E}(\#$ Hamiltonian cycles in $G(n,p_E)) \xrightarrow[n \to \infty]{} \left\{ \begin{array}{l} >1 & \text{if } p_E \gg 1/n \\ <1 & \text{if } p_E \ll 1/n \end{array} \right.$

For increasing properties, $p_E \le p = O(p_E \log |H|)$

Spreadness implies robustness

Kahn-Kalai conjecture 2006

- threshold: $\mathbb{P}(G(n,p) \text{ is Hamiltonian}) \xrightarrow[n \to \infty]{} \left\{ \begin{array}{l} 1 & \text{if } p \gg \log(n)/n \\ 0 & \text{if } p \ll \log(n)/n \end{array} \right.$
- expectation threshold: $\mathbb{E}(\#$ Hamiltonian cycles in $G(n,p_E)) \xrightarrow[n \to \infty]{} \left\{ \begin{array}{l} >1 & \text{if } p_E \gg 1/n \\ <1 & \text{if } p_E \ll 1/n \end{array} \right.$

For increasing properties, $p_E \le p = O(p_E \log |H|)$

Park, Pham 2022

Proved Kahn-Kalai conjecture

Spreadness implies robustness

Kahn-Kalai conjecture 2006

- threshold: $\mathbb{P}(G(n,p) \text{ is Hamiltonian}) \xrightarrow[n \to \infty]{} \begin{cases} 1 & \text{if } p \gg \log(n)/n \\ 0 & \text{if } p \ll \log(n)/n \end{cases}$
- ullet expectation threshold: $\mathbb{E}(\#$ Hamiltonian cycles in $G(n,p_E)) \xrightarrow[n \to \infty]{} \left\{ \begin{array}{l} > 1 & \text{if } p_E \gg 1/n \\ < 1 & \text{if } p_E \ll 1/n \end{array} \right.$

For increasing properties, $p_E \le p = O(p_E \log |H|)$

Park, Pham 2022

Proved Kahn-Kalai conjecture

Kelly, Müyesser, Pokrovskiy 2023

If q-spread distribution of H in G, then $G*(q \log |H|)$ still contains H with good probability

Embedding spanning trees of bounded degree

Komlós, Sárközy, Szemerédi 1996

 $\forall \Delta, \forall \alpha > 0$, for *n* large enough, $\delta(G) \geq (\frac{1}{2} + \alpha)n \Rightarrow G$ is universal for spanning trees of maximum degree Δ

Embedding spanning trees of bounded degree

Komlós, Sárközy, Szemerédi 1996

 $\forall \Delta, \forall \alpha > 0$, for *n* large enough, $\delta(G) \geq (\frac{1}{2} + \alpha)n \Rightarrow G$ is universal for spanning trees of maximum degree Δ

Montgomery 2019

For all Δ , $\mathit{G}(n, \mathit{O}_{\Delta}(\log(n)/n))$ is universal for spanning trees of maximum degree Δ

Embedding spanning trees of bounded degree

Komlós, Sárközy, Szemerédi 1996

 $\forall \Delta, \forall \alpha > 0$, for *n* large enough, $\delta(G) \geq (\frac{1}{2} + \alpha)n \Rightarrow G$ is universal for spanning trees of maximum degree Δ

Montgomery 2019

For all Δ , $G(n, O_{\Delta}(\log(n)/n))$ is universal for spanning trees of maximum degree Δ

Pham, Sah, Sawhney, Simkin 23

 $O(\frac{1}{n})$ -spread distribution for perfect matchings, K_r -factor and spanning trees of bounded degree

Spread distribution on trees of bounded degree

Pham, Sah, Sawhney, Simkin 23

 $O(\frac{1}{n})$ -spread distribution for perfect matchings, K_r -factor and spanning trees of bounded degree

Bastide, L.-D., Müyesser 25

 $O(\frac{1}{n})$ -spread distribution for spanning trees of bounded degree

- Avoids the Regularity Lemma
- Shorter and more flexible proof
- Better constants
- Generalizes painlessly to hypergraphs and digraphs

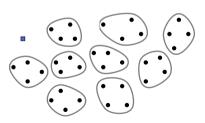
Chopping T and G

• Split T in subtrees T_i of size C = O(1)



Chopping T and G

- Split T in subtrees T_i of size C = O(1)
- Partition G randomly in subgraphs G_i of size C-1
- All G_i are $\alpha/2$ -Dirac and for all G_i and G_j , $\delta(G_i, G_j) > \frac{1+\alpha}{2} |G_j|$

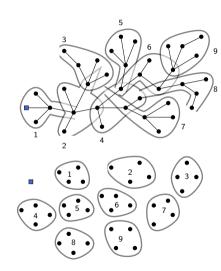


Chopping T and G

- Split T in subtrees T_i of size C = O(1)
- Partition G randomly in subgraphs G_i of size C-1
- All G_i are $\alpha/2$ -Dirac and for all G_i and G_j , $\delta(G_i, G_i) > \frac{1+\alpha}{2}|G_i|$

Spreadness

Assign each T_i a uniform random bag $G_{\phi(i)}$



Chopping T and G

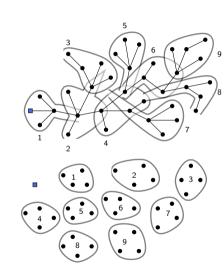
- Split T in subtrees T_i of size C = O(1)
- Partition G randomly in subgraphs G_i of size C-1
- All G_i are $\alpha/2$ -Dirac and for all G_i and G_j , $\delta(G_i, G_j) > \frac{1+\alpha}{2}|G_j|$

Spreadness

Assign each T_i a uniform random bag $G_{\phi(i)}$

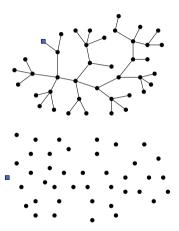
Embedding

Embed each T_i deterministically in $G_{\phi(i)}$ using KSS



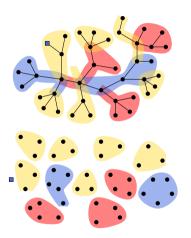
Problem 1

T cannot be split into same size blocks



Problem 1

T cannot be split into same size blocks



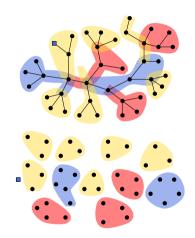
Problem 1

T cannot be split into same size blocks

 \centering Colour the blocks by size, O(1) colours

Problem 2

- Most G_i are $\alpha/2$ -Dirac
- For most G_i and G_j , $\delta(G_i, G_j) > \frac{1+\alpha}{2}|G_j|$



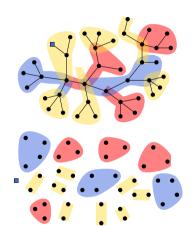
Problem 1

T cannot be split into same size blocks

 \ref{One} Colour the blocks by size, O(1) colours

Problem 2

- Most G_i are $\alpha/2$ -Dirac
- For most G_i and G_j , $\delta(G_i, G_j) > \frac{1+\alpha}{2}|G_j|$
- 💡 More blocks, slightly smaller, dispatch leftover randomly



$$\delta(G') = (1 - \varepsilon)|G'|$$

Future work

- Spread distribution for spanning grids when $\delta(G) \geq (\frac{1}{2} + \alpha)n$ Subdivision arguments do not work as nicely
- Extend our result to graphs of bandwidth o(n) when $\delta(G) \geq (\frac{1}{2} + \alpha)n$ Probabilistic analysis more complex

Future work

- Spread distribution for spanning grids when $\delta(G) \geq (\frac{1}{2} + \alpha)n$ Subdivision arguments do not work as nicely
- Extend our result to graphs of bandwidth o(n) when $\delta(G) \geq (\frac{1}{2} + \alpha)n$ Probabilistic analysis more complex

Thanks!