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Dirac-type thresholds

When does H C G?

e NP-complete (ex: Hamiltonian cycle)
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Dirac-type thresholds

When does H C G? '/I\[

e NP-complete (ex: Hamiltonian cycle)

e \What about sufficient conditions ?

Dirac 1952
If 5(G) > n/2 then G is Hamiltonian

Dirac threshold of H
What is the infimum ¢4 , such that §(G) > 6y, = HC G?

Focus on Hamiltonian cycles and spanning trees of bounded degree
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Counting the embeddings

Embedding
Injection ¢ : H — G such that uv € E(H) = ¢(u)¢(v) € E(G)

Counting the embeddings
If 6(G) > dn,n, how many embeddings of H in G7
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Counting the embeddings

Embedding
Injection ¢ : H — G such that uv € E(H) = ¢(u)¢(v) € E(G)

Counting the embeddings

If 6(G) > dn,n, how many embeddings of H in G7
For which G is this number minimal ?

Sarkozy, Selkow, Szemerédi 2003 and Cuckler, Kahn 2003
If 5(G) > § then at least n!/2" distinct Hamiltonian cycles

Clément Legrand Some context 4/ 16



Random graphs

Erdés-Rényi graph G(n, p)
Keep each edge of K|, independently with probability p

Embedding in a random graph
For what p, does P[H C G(n, pn)] > 37

Clément Legrand Some context 5 /16



Random graphs

Erdés-Rényi graph G(n, p)
Keep each edge of K|, independently with probability p

Embedding in a random graph
For what p, does P[H C G(n, pn)] > 37

Pésa 1962
P[G(n,log(n)/n) is Hamiltonian] — 1

KorSunov 1977
Sharp threshold for hamiltonicity
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Random sparsification G * p
Keep each edge of G with probability p

Embedding in a typical subgraph
For what p, does P[H C G * p,] > 1 for all G with §(G) >y ,?
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Random sparsification G * p
Keep each edge of G with probability p

Embedding in a typical subgraph
For what p, does P[H C G * p,] > 1 for all G with §(G) >y ,?

Krivelevich, Sudakov, 2014
If (G) > n/2, then G x (log(n)/n) remains Hamiltonian with good probability
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Counting the embeddings
If 6(G) > d,n, how many embeddings of H in G?7

Embedding in a random graph
For what p, does P[H C G(n, pn)] > 37

Embedding in a typical subgraph
For what p, does P[H C G * p,] > 1 for all G with §(G) > 4 ,?
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Unified approach

g-spread embedding

A distribution P over embeddings ¢ : H — G is g-spread if Vxq,...xs € V(H),
Vyi,...¥s € V(G),

PVi, ¢(xi) = yil < ¢°
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g-spread embedding
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Unified approach

g-spread embedding

A distribution P over embeddings ¢ : H — G is g-spread if Vxq,...xs € V(H),
Vyi,...¥s € V(G),

PlVi, ¢(xi) = yi] < q°
Typically, g = %

Other point of view

Randomized algorithm embedding H progressively, with linearly many options at each step

PVi <s,¢(xi) = yi] = Plp(x1) = y1] - Plo(xs) = ys [ o(x1) =y, d(Xs—1) = ys-1]
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Random embedding of an Hamiltonian cycle in K|,

Same as random permutation
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Toy example

Random embedding of an Hamiltonian cycle in K|,

Same as random permutation

Vxi,...xs € V(Cp),Vy1,...ys € V(Kp),
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Toy example

Random embedding of an Hamiltonian cycle in K|,

Same as random permutation

Vxi,...xs € V(Cp),Vy1,...ys € V(Kp),

BIvi, o) = v = " < (&)

n! n

by Stirling’s formula
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Toy example

Random embedding of an Hamiltonian cycle in K|,

Same as random permutation

Vxi,...xs € V(Cp),Vy1,...ys € V(Kp),

BIvi, o) = v = " < (&)

n! n

by Stirling’s formula

® Same proof for embeddings of spanning trees

® Much harder when G is not a clique
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Spreadness implies counting

If there is a g-spread distribution, then for any embedding ¢y,

Pl¢ = o) < q!

Hence, # embeddings > g~ IH!
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Spreadness implies counting

If there is a g-spread distribution, then for any embedding ¢y,
Pl¢ = ¢n] < "
Hence, # embeddings > g~ IH!

Corollary

If there is a (& )-spread distribution, then G contains at least (2)” embeddings of H

Application
(g)" embeddings of C, in K,
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Spreadness implies robustness

Kahn-Kalai conjecture 2006

e threshold: P(G(n, p) is Hamiltonian) —
n—oo

{1 if p > log(n)/n
0 if p <log(n)/n

® expectation threshold: E(# Hamiltonian cycles in G(n, pg)) ——

n—oo

>1 ifpe>1/n
<1 ifpe<g1/n

For increasing properties, pe < p = O(pge log |H|)

Clément Legrand g-spread embeddings 11 / 16



Spreadness implies robustness

Kahn-Kalai conjecture 2006

e threshold: P(G(n, p) is Hamiltonian) —
n—oo

{1 if p > log(n)/n
0 if p <log(n)/n

® expectation threshold: E(# Hamiltonian cycles in G(n, pg)) ——

n—oo

>1 ifpe>1/n
<1 ifpe<g1/n

For increasing properties, pe < p = O(pge log |H|)
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Spreadness implies robustness

Kahn-Kalai conjecture 2006

e threshold: P(G(n, p) is Hamiltonian) —
n—oo

{1 if p > log(n)/n
0 if p <log(n)/n

® expectation threshold: E(# Hamiltonian cycles in G(n, pg)) ——

n—oo

>1 ifpe>1/n
<1 ifpe<g1/n

For increasing properties, pe < p = O(pge log |H|)

Park, Pham 2022

Proved Kahn-Kalai conjecture

Kelly, Miyesser, Pokrovskiy 2023
If g-spread distribution of H in G, then G x (glog |H]|) still contains H with good probability
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Embedding spanning trees of bounded degree

Komlés, Sarkozy, Szemerédi 1996

VA,Va > 0, for n large enough, §(G) > (3 + a)n = G is universal for spanning trees of
maximum degree A
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Komlés, Sarkozy, Szemerédi 1996

VA,Va > 0, for n large enough, §(G) > (3 + a)n = G is universal for spanning trees of
maximum degree A

Montgomery 2019
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Embedding spanning trees of bounded degree

Komlés, Sarkozy, Szemerédi 1996
VA,Va > 0, for n large enough, §(G) > (3 + a)n = G is universal for spanning trees of

maximum degree A

Montgomery 2019

For all A, G(n, Oa(log(n)/n)) is universal for spanning trees of maximum degree A

Pham, Sah, Sawhney, Simkin 23

O(%)—spread distribution for perfect matchings, K,-factor and spanning trees of bounded
degree
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Spread distribution on trees of bounded degree

Pham, Sah, Sawhney, Simkin 23

O(%)—spread distribution for perfect matchings, K,-factor and spanning trees of bounded
degree

Bastide, L.-D., Miiyesser 25
O(%)—spread distribution for spanning trees of bounded degree

® Avoids the Regularity Lemma ® Better constants

® Shorter and more flexible proof ® Generalizes painlessly to hypergraphs and digraphs
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Sketch of proof in an ideal world

Chopping T and G
e Split T in subtrees T; of size C — O(1)
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Assign each T; a uniform random bag Gy ;)
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Sketch of proof in an ideal world

Chopping T and G
® Split T in subtrees T; of size C = O(1)
® Partition G randomly in subgraphs G; of size C — 1

e All G; are a/2-Dirac and for all G; and G;j,
3(Gi, Gj) > 152G

Spreadness

Assign each T; a uniform random bag Gy ;)

Embedding
Embed each T; deterministically in Gy using KSS

Clément Legrand Spread distribution on trees of bounded degree 14 / 16



“Lourd est le parpaing de la réalité sur la tartelette aux fraises de nos illusions” - goutet

Problem 1
T cannot be split into same size blocks
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“Lourd est le parpaing de la réalité sur la tartelette aux fraises de nos illusions” - goutet

Problem 1

T cannot be split into same size blocks
¢ Colour the blocks by size, O(1) colours
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“Lourd est le parpaing de la réalité sur la tartelette aux fraises de nos illusions” - goutet

Problem 1

T cannot be split into same size blocks
¢ Colour the blocks by size, O(1) colours

Problem 2
e Most G; are a/2-Dirac .
e For most G; and G, §(G;, Gj) > 22| DA B £
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“Lourd est le parpaing de la réalité sur la tartelette aux fraises de nos illusions” - goutet

Problem 1

T cannot be split into same size blocks
¢ Colour the blocks by size, O(1) colours

Problem 2
e Most G; are a/2-Dirac

o For most Gy and Gj, 6(Gi, G)) > 142G I X | ‘

« More blocks, slightly smaller, dispatch leftover randomly . e e L o
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* Spread distribution for spanning grids when 6(G) > (1 + a)n
Subdivision arguments do not work as nicely

* Extend our result to graphs of bandwidth o(n) when 6(G) > (3 + a)n
Probabilistic analysis more complex
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* Spread distribution for spanning grids when 6(G) > (1 + a)n
Subdivision arguments do not work as nicely

* Extend our result to graphs of bandwidth o(n) when 6(G) > (3 + a)n
Probabilistic analysis more complex

Thanks!
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