
Random embeddings of bounded degree trees with optimal spread

Clément Legrand-Duchesne

Jagiellonian University, Kraków

September 22, 2025

Joint work with Alp Müyesser, Paul Bastide

Clément Legrand 1 / 16



Hiking workshop

Clément Legrand 2 / 16



Dirac-type thresholds

When does H ⊂ G?
• NP-complete (ex: Hamiltonian cycle)

• What about sufficient conditions ?

Dirac 1952
If δ(G) ≥ n/2 then G is Hamiltonian

Dirac threshold of H
What is the infimum δH,n such that δ(G) ≥ δH,n ⇒ H ⊂ G ?

Focus on Hamiltonian cycles and spanning trees of bounded degree
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Counting the embeddings

Embedding
Injection φ : H → G such that uv ∈ E(H) ⇒ φ(u)φ(v) ∈ E(G)

Counting the embeddings
If δ(G) ≥ δH,n, how many embeddings of H in G?

For which G is this number minimal ?

Sárközy, Selkow, Szemerédi 2003 and Cuckler, Kahn 2003
If δ(G) ≥ n

2 then at least n!/2n distinct Hamiltonian cycles

Clément Legrand Some context 4 / 16



Counting the embeddings

Embedding
Injection φ : H → G such that uv ∈ E(H) ⇒ φ(u)φ(v) ∈ E(G)

Counting the embeddings
If δ(G) ≥ δH,n, how many embeddings of H in G?

For which G is this number minimal ?

Sárközy, Selkow, Szemerédi 2003 and Cuckler, Kahn 2003
If δ(G) ≥ n

2 then at least n!/2n distinct Hamiltonian cycles

Clément Legrand Some context 4 / 16



Counting the embeddings

Embedding
Injection φ : H → G such that uv ∈ E(H) ⇒ φ(u)φ(v) ∈ E(G)

Counting the embeddings
If δ(G) ≥ δH,n, how many embeddings of H in G?
For which G is this number minimal ?

Sárközy, Selkow, Szemerédi 2003 and Cuckler, Kahn 2003
If δ(G) ≥ n

2 then at least n!/2n distinct Hamiltonian cycles

Clément Legrand Some context 4 / 16



Random graphs

Erdős-Rényi graph G(n, p)
Keep each edge of Kn independently with probability p

Embedding in a random graph
For what pn does P[H ⊂ G(n, pn)] ≥ 1

2?

Pósa 1962
P[G(n, log(n)/n) is Hamiltonian] −−−→

n→∞
1

Koršunov 1977
Sharp threshold for hamiltonicity
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Robustness

Random sparsification G ∗ p
Keep each edge of G with probability p

Embedding in a typical subgraph
For what pn does P[H ⊂ G ∗ pn] ≥ 1

2 for all G with δ(G) ≥ δH,n?

Krivelevich, Sudakov, 2014
If δ(G) ≥ n/2, then G ∗ (log(n)/n) remains Hamiltonian with good probability

Clément Legrand Some context 6 / 16



Robustness

Random sparsification G ∗ p
Keep each edge of G with probability p

Embedding in a typical subgraph
For what pn does P[H ⊂ G ∗ pn] ≥ 1

2 for all G with δ(G) ≥ δH,n?

Krivelevich, Sudakov, 2014
If δ(G) ≥ n/2, then G ∗ (log(n)/n) remains Hamiltonian with good probability

Clément Legrand Some context 6 / 16



To sum up

Counting the embeddings
If δ(G) ≥ δH,n, how many embeddings of H in G?

Embedding in a random graph
For what pn does P[H ⊂ G(n, pn)] ≥ 1

2?

Embedding in a typical subgraph
For what pn does P[H ⊂ G ∗ pn] ≥ 1

2 for all G with δ(G) ≥ δH,n?
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Unified approach

q-spread embedding
A distribution P over embeddings φ : H → G is q-spread if ∀x1, . . . xs ∈ V (H),
∀y1, . . . ys ∈ V (G),

P[∀i , φ(xi) = yi ] ≤ qs

Typically, q = C
n

Other point of view
Randomized algorithm embedding H progressively, with linearly many options at each step

P[∀i ≤ s, φ(xi) = yi ] = P[φ(x1) = y1] · · ·P[φ(xs) = ys | φ(x1) = y1, . . . φ(xs−1) = ys−1]

≤
(

C
n

)s
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Toy example

Random embedding of an Hamiltonian cycle in Kn

Same as random permutation

∀x1, . . . xs ∈ V (Cn),∀y1, . . . ys ∈ V (Kn),

P[∀i , φ(xi) = yi ]

=
(n − s)!

n! ≤
(e

n

)s

by Stirling’s formula

• Same proof for embeddings of spanning trees
• Much harder when G is not a clique
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Spreadness implies counting

If there is a q-spread distribution, then for any embedding φH ,

P[φ = φH ] ≤ q|H|

Hence, # embeddings ≥ q−|H|

Corollary
If there is a

(C
n
)
-spread distribution, then G contains at least

( n
C
)n embeddings of H

Application(n
e
)n embeddings of Cn in Kn
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Spreadness implies robustness

Kahn-Kalai conjecture 2006

• threshold: P(G(n, p) is Hamiltonian) −−−→
n→∞

{
1 if p � log(n)/n
0 if p � log(n)/n

• expectation threshold: E(# Hamiltonian cycles in G(n, pE )) −−−→n→∞

{
> 1 if pE � 1/n
< 1 if pE � 1/n

For increasing properties, pE ≤ p = O(pE log |H|)

Park, Pham 2022
Proved Kahn-Kalai conjecture

Kelly, Müyesser, Pokrovskiy 2023
If q-spread distribution of H in G, then G ∗ (q log |H|) still contains H with good probability
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Embedding spanning trees of bounded degree

Komlós, Sárközy, Szemerédi 1996
∀∆,∀α > 0, for n large enough, δ(G) ≥ (12 + α)n ⇒ G is universal for spanning trees of
maximum degree ∆

Montgomery 2019
For all ∆, G(n,O∆(log(n)/n)) is universal for spanning trees of maximum degree ∆

Pham, Sah, Sawhney, Simkin 23
O( 1n )-spread distribution for perfect matchings, Kr -factor and spanning trees of bounded
degree

Clément Legrand Spread distribution on trees of bounded degree 12 / 16
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Spread distribution on trees of bounded degree

Pham, Sah, Sawhney, Simkin 23
O( 1n )-spread distribution for perfect matchings, Kr -factor and spanning trees of bounded
degree

Bastide, L.-D., Müyesser 25
O( 1n )-spread distribution for spanning trees of bounded degree

• Avoids the Regularity Lemma
• Shorter and more flexible proof

• Better constants
• Generalizes painlessly to hypergraphs and digraphs
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Sketch of proof in an ideal world

Chopping T and G
• Split T in subtrees Ti of size C = O(1)

• Partition G randomly in subgraphs Gi of size C − 1

• All Gi are α/2-Dirac and for all Gi and Gj ,
δ(Gi ,Gj) >

1+α
2 |Gj |

Spreadness
Assign each Ti a uniform random bag Gφ(i)

Embedding
Embed each Ti deterministically in Gφ(i) using KSS
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“Lourd est le parpaing de la réalité sur la tartelette aux fraises de nos illusions” - Boulet

Problem 1
T cannot be split into same size blocks

Colour the blocks by size, O(1) colours

Problem 2
• Most Gi are α/2-Dirac
• For most Gi and Gj , δ(Gi ,Gj) >

1+α
2 |Gj |

More blocks, slightly smaller, dispatch leftover randomly

δ(G ′) = (1− ε)|G ′|
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Future work

• Spread distribution for spanning grids when δ(G) ≥ (12 + α)n
Subdivision arguments do not work as nicely

• Extend our result to graphs of bandwidth o(n) when δ(G) ≥ (12 + α)n
Probabilistic analysis more complex

Thanks!

Clément Legrand Outline of the proof 16 / 16
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