Reconfiguration of square-tiled surfaces

Clément Legrand-Duchesne

LaBRI, Bordeaux

November 13, 2023

Joint work with Vincent Delecroix.

Definition

• Square-tiled surface: gluing of N square tiles on their parrallel sides \rightsquigarrow closed orientable connected surface

	Ν		S	
w	1	EE	2	w
	s		N	

Definition

- Square-tiled surface: gluing of *N* square tiles on their parrallel sides \rightsquigarrow closed orientable connected surface
- Quadratic: adjacencies = {NS,EW, NN, SS, EE, WW}
- Abelian: only {NS,EW}

Abelian

	Ν			S	
N	1	Е	Е	2	w
	s			Ν	

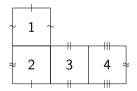
Quadratic

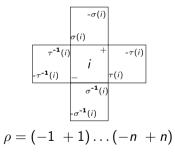
Definition

- Square-tiled surface: gluing of *N* square tiles on their parrallel sides \rightsquigarrow closed orientable connected surface
- Quadratic: adjacencies = {NS,EW, NN, SS, EE, WW}
- Abelian: only {NS,EW}

Abelian

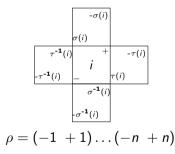
Quadratic





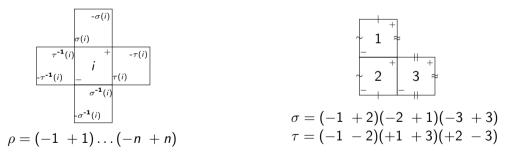
Encoding with involutions

Triplet of involutions without fix-point $\rho, \sigma, \tau \in \mathfrak{S}_{2n}$ that generate a transitive subgroup of \mathfrak{S}_{2n}



Encoding with involutions

Triplet of involutions without fix-point $\rho, \sigma, \tau \in \mathfrak{S}_{2n}$ that generate a transitive subgroup of \mathfrak{S}_{2n}

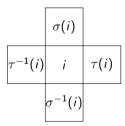


Abelian encoding



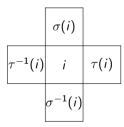
Encoding with permutations

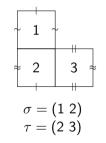
Pair of permutations $\sigma, \tau \in \mathfrak{S}_n$ that generate a transitive subgroup of \mathfrak{S}_n



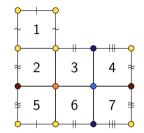
Encoding with permutations

Pair of permutations $\sigma, \tau \in \mathfrak{S}_n$ that generate a transitive subgroup of \mathfrak{S}_n

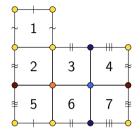




Stratum



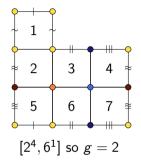
Stratum



Euler's formula

- μ_i : # vertices of degree 2*i* or angle $i\pi$
- $\sum_i (i-2)\mu_i = 4g-4$
- Stratum: $[1^{\mu_1}, 2^{\mu_2}, ...]$

Stratum



Euler's formula

- μ_i : # vertices of degree 2*i* or angle $i\pi$
- $\sum_i (i-2)\mu_i = 4g-4$
- Stratum: $[1^{\mu_1}, 2^{\mu_2}, \dots]$

Reconfiguration

- Configuration space $\Omega = ST(\mu)$
- Elementay operation \leftrightarrow
- Equivalent configurations: \exists a sequence of operations leading from one to the other
- Reconfiguration graph: Vertices = configurations, edges = elementary operations

Reconfiguration

- Configuration space $\Omega = ST(\mu)$
- Elementay operation \leftrightarrow
- Equivalent configurations: \exists a sequence of operations leading from one to the other
- Reconfiguration graph: Vertices = configurations, edges = elementary operations

Usual questions

- Are any configurations equivalent ?
- How many reconfiguration steps separate any two configurations ?
- Application to sampling: Does the corresponding Markov chain mix well ?

Random Walk P on the reconfiguration graph

- Irreducible: reconfiguration graph connected
- Aperiodic + Irreducible \Rightarrow converges to stationary distribution π
- Symmetric $\Rightarrow \pi$ uniform

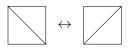
Random Walk P on the reconfiguration graph

- Irreducible: reconfiguration graph connected
- Aperiodic + Irreducible \Rightarrow converges to stationary distribution π
- Symmetric $\Rightarrow \pi$ uniform

Mixing time

$$t_{mix}(\varepsilon) = \inf\{t \colon \max_{x \in \Omega} \|P^t(x, \cdot) - \pi\|_{TV} \le \varepsilon\}$$

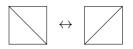
where $\|\alpha - \beta\|_{TV} = \sup_{X \subset \Omega} |\alpha(X) - \beta(X)|$



Disarlo, Parlier 2014

Reconfiguration diameter of n-triangulations of genus g:

- Labeled vertices: $\Theta(g \log(g+1) + n \log(n))$
- Unlabeled vertices: $\Theta(g \log(g+1) + n)$



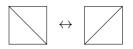
Disarlo, Parlier 2014

Reconfiguration diameter of n-triangulations of genus g:

- Labeled vertices: $\Theta(g \log(g+1) + n \log(n))$
- Unlabeled vertices: $\Theta(g \log(g+1) + n)$

Budzinski 2018

- For g = 0, $t_{mix} = \Omega(n^{5/4})$
- *t_{mix}* polynomial in *n* ?



Disarlo, Parlier 2014

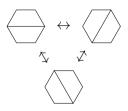
Reconfiguration diameter of n-triangulations of genus g:

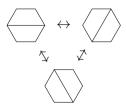
- Labeled vertices: $\Theta(g \log(g+1) + n \log(n))$
- Unlabeled vertices: $\Theta(g \log(g+1) + n)$

Budzinski 2018

- For g = 0, $t_{mix} = \Omega(n^{5/4})$
- *t_{mix}* polynomial in *n* ?

Not on quadrangulations !

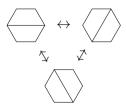




Caraceni, Stauffer 20

• For
$$g = 0$$
, $t_{mix} = \Omega(n^{5/4})$

• $t_{mix} = O(n^{13/2})$



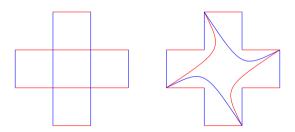
Caraceni, Stauffer 20

• For
$$g = 0$$
, $t_{mix} = \Omega(n^{5/4})$

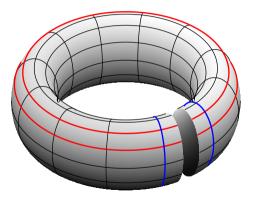
• $t_{mix} = O(n^{13/2})$

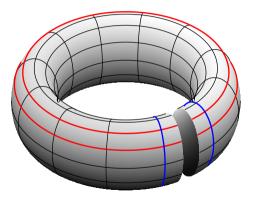
Preserves genus but not square-tiled surfaces !

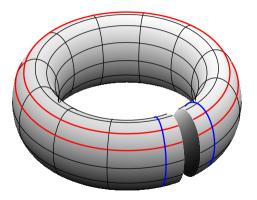
Elementary rotation

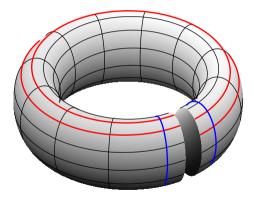


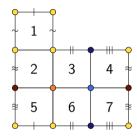
Preserves genus and square tiled-surface, but not Abelian/quadratic !

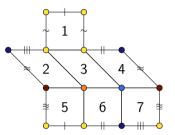


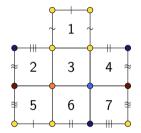




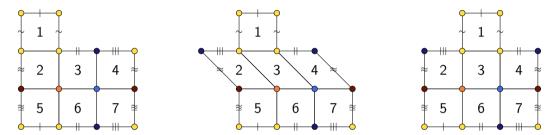








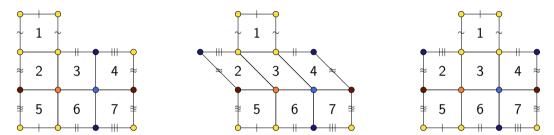
Shearing move



Shearing = multiply σ by a cycle of τ

Shearing moves preserve the angle around the vertices and Abelian property !

Shearing move



Shearing = multiply σ by a cycle of τ

Shearing moves preserve the angle around the vertices and Abelian property !

Two settings

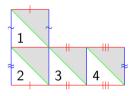
- Slow shears: One shear at a time
- Fast shears: Any number of shears on the same cylinder count as one

Clément Legrand

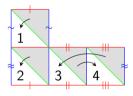
Conjecture [Delecroix, Goujard, Jeffreys, Parlier, Schleimer 2022]

Within any Abelian stratum, all square-tiled surfaces (with identical spin and hyperellipticity) are equivalent

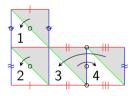
- Square-tiled surface fixed under rotation of angle π
- Quotient gives a sphere



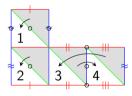
- Square-tiled surface fixed under rotation of angle π
- Quotient gives a sphere



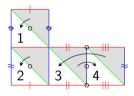
- Square-tiled surface fixed under rotation of angle π
- Quotient gives a sphere

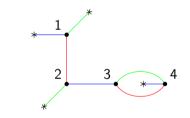


- Square-tiled surface fixed under rotation of angle $\boldsymbol{\pi}$
- Quotient gives a sphere



- Square-tiled surface fixed under rotation of angle π
- Quotient gives a sphere

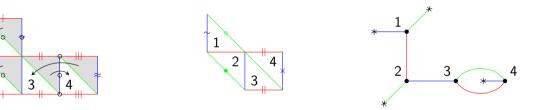




Hyperellipticity

Hyperelliptic square-tiled surface

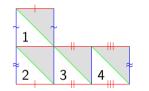
- Square-tiled surface fixed under rotation of angle $\boldsymbol{\pi}$
- Quotient gives a sphere

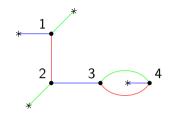


Hyperelleptic component

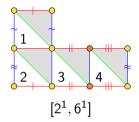
- $\mu = [2^{\mu_2}, 4g-2]$ or $[2^{\mu_2}, (2g)^2] \rightsquigarrow$ shearing preserves hyperellipticity
- $ST_{Ab}^{hyp}(\mu) \subseteq ST_{Ab}(\mu)$

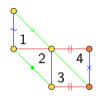
Strata for tricolored planar graphs

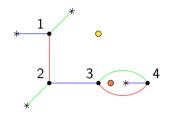




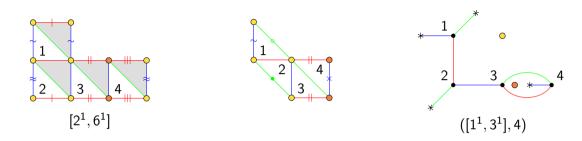
Strata for tricolored planar graphs







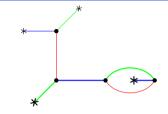
Strata for tricolored planar graphs



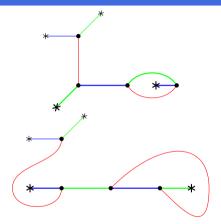
Stratum

- μ_i : number of faces of degree 3i
- k: number of triangles
- Euler's formula : $(\sum_{i}(i-2)\mu_{i}) k = 4g 4 = -4$
- Quotient of $ST_{Ab}^{hyp}(\nu)$: $([1^{\mu_1}, 2^{\mu_2}, d^1], d + 2 \mu_1)$

Shearing moves in tricolored planar graphs

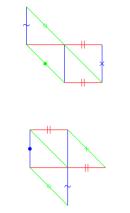


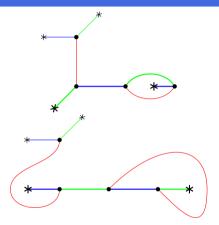
Shearing moves in tricolored planar graphs



I I I

Shearing moves in tricolored planar graphs





Shearing move

• swap colors + treadmill

• RG and GB in
$$O(1)$$
, RB in $O(n)$

Clément Legrand

Delecroix, L. 2023+

Reconfiguration diameter of unlabeled tricolored graphs:

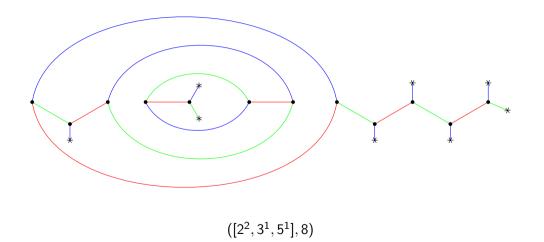
• Abelian hyperelliptic component $ST_{Ab}^{hyp}([2^{\mu_2}, 4g - 2])$ and $ST_{Ab}^{hyp}([2^{\mu_2}, (2g)^2])$:

O(gn) slow shears, $\Theta(g)$ fast shears

• g = 0 and $\mu_1 = 0$:

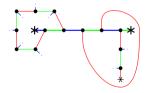
O(kn) slow shears, $\Theta(k)$ fast shears

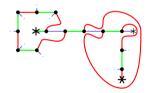
Reach a "canonical" configuration



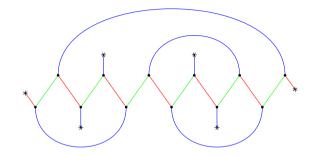
Get to a path-like configuration: One RG cylinder finishing with halfedges
Reconfiguration within path-likes

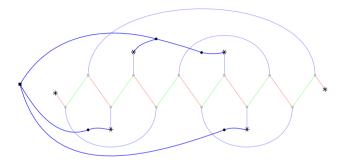
- 1. Take a RG path
- 2. The RB path at the end of it is a fusion-path
- 3. Collapse the cylinders with a GB shear.





Blue dual tree

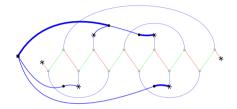




Proposition

All path-like configurations corresponding to a blue dual tree are equivalent via O(n) RG shears

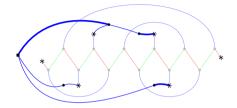
Clément	Legrand

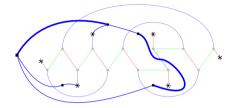


new Glue-cut operation preserving path-likes

Clément Legrand

No triangles



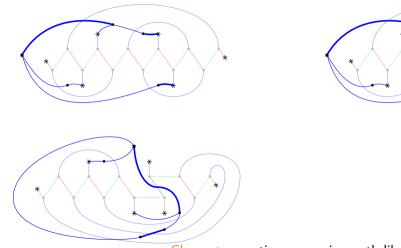


new Glue-cut operation preserving path-likes

Clément Legrand

No triangles

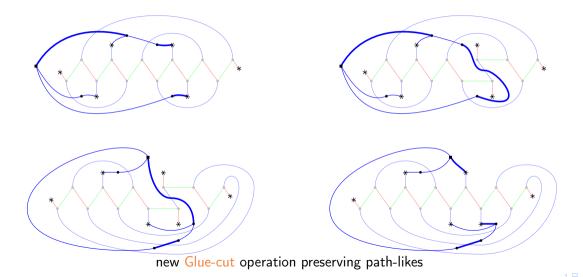
21 / 23



new Glue-cut operation preserving path-likes

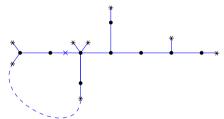
	Legrand

*



Clément	Legrand

- 1. Blue dual tree \rightarrow Blue dual path
- 2. Sort the vertices on the path



Rapid mixing in ST_{Ab}^{hyp} ?

- Among path-like configurations with the glue-cut operation ?
- In general ?

Connectivity in the general case

- Non planar \Rightarrow no dual tricolored planar graph
- Hyperelleptic case negligible, not in all strata

Rapid mixing in ST_{Ab}^{hyp} ?

- Among path-like configurations with the glue-cut operation ?
- In general ?

Connectivity in the general case

- Non planar \Rightarrow no dual tricolored planar graph
- Hyperelleptic case negligible, not in all strata

Thanks !