Kempe recoloring version of Hadwiger's conjecture

Clément Legrand-Duchesne

LaBRI, Bordeaux

October 31, 2023

Joint work with Marthe Bonamy, Marc Heinrich and Jonathan Narboni

Maximal bichromatic connected component in G

Maximal bichromatic connected component in G

Maximal bichromatic connected component in G

Maximal bichromatic connected component in G

Usual questions

- Are any two *k*-colorings of a graph G equivalent ? Are all *k*-colorings equivalent to a $\chi(G)$ -coloring ?
- How many Kempe changes separate any two k-colorings?
- Application to sampling : Does the corresponding Markov chain mix well?

Graph minor

H is a minor of G if H can be obtained be deleting vertices, edges and contracting edges of G

Graph minor

H is a minor of G if H can be obtained be deleting vertices, edges and contracting edges of G

 \mathcal{K}_t is a minor of G if and only if $V_1\sqcup\cdots\sqcup V_t\subseteq V(\mathcal{G})$, with V_i connected and $G[V_1,\ldots V_t]=K_t$

Wagner, Kuratowski 1930

A graph is planar iff K_5 -minor and $K_{3,3}$ -minor free

Appel, Haken 1976

If G is planar, then $\chi(G) < 4$

Robertson, Sanders, Seymour, Thomas 1997 Much simpler proof, but still computer assisted

Hadwiger's conjecture 1943

If G is K_t -minor free then $\chi(G) \leq t-1$ Proved for $1 \le t \le 6$, widely open for $t > 6$

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Conjecture 1 [Las Vergnas and Meyniel 1981]

All the *t*-colorings of a K_t -minor free graph are Kempe-equivalent

Conjecture 2 [Las Vergnas and Meyniel 1981]

All the t-colorings of a K_t-minor free graph are Kempe-equivalent to a $(t - 1)$ -coloring

Frozen coloring

 α is frozen if $\forall i, j$, the graph induced by colors *i* and *j* is connected

Frozen coloring

 α is frozen if $\forall i, j$, the graph induced by colors *i* and *j* is connected

Quasi-minor

 \mathcal{K}_t is quasi-minor of G if there exists $V_1\sqcup\cdots\sqcup V_t$ such that $\forall i\neq j,$ $G[V_i\cup V_j]$ is connected and $G[V_1, \ldots V_t] = K_t$

Frozen coloring

 α is frozen if $\forall i, j$, the graph induced by colors *i* and *j* is connected

Quasi-minor

 \mathcal{K}_t is quasi-minor of G if there exists $V_1\sqcup\cdots\sqcup V_t$ such that $\forall i\neq j,$ $G[V_i\cup V_j]$ is connected and $G[V_1, \ldots V_t] = K_t$

 K_t -minor \Rightarrow quasi K_t -minor Frozen t-coloring \Rightarrow quasi K_t -minor

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- \bullet no frozen *t*-coloring
- only one *t*-coloring up to color permutation \rightsquigarrow Hadwiger's conjecture is false

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- \bullet no frozen *t*-coloring
- only one *t*-coloring up to color permutation \rightsquigarrow Hadwiger's conjecture is false

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t -minor \Rightarrow No quasi K_t -minor \Rightarrow No frozen t-coloring

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- \bullet no frozen *t*-coloring
- only one *t*-coloring up to color permutation \rightsquigarrow Hadwiger's conjecture is false

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t -minor \Rightarrow No quasi K_t -minor \Rightarrow No frozen t-coloring

```
Conjecture 3 holds for
[Las Vergnas and Meyniel '81] t < 5[Jørgensen '94] t = 8[Song and Thomas '06] t = 9[Kriesell '21] t = 10
```
To sum up

No K_t -minor implies ...

1. t-recolorable	\wedge	3. No quasi- K_t -minor	Hadwiger's conjecture is false
Assuming Hadwiger			
2. Every t-coloring is equivalent to a $(t-1)$ -coloring			

No K_t -minor implies ...

1. t-recolorable	\wedge	3. No quasi- K_t -minor	Hadwiger's conjecture is false
Assuming Hadwiger			
2. Every t-coloring is equivalent to a $(t-1)$ -coloring			

Bonamy, Heinrich, L., Narboni '23

• Strongly disproved for large $t: \forall \varepsilon > 0$ and large enough $t, \exists G$ with a frozen t-coloring but no $\mathcal{K}_{\left(\frac{2}{3}+\varepsilon\right)t}$ -minor. This graph admits another t -coloring.

No K_t -minor implies ...

1. t-recolorable	\wedge	3. No quasi- K_t -minor	Hadwiger's conjecture is false
Assuming Hadwiger			
2. Every t-coloring is equivalent to a $(t-1)$ -coloring			

Bonamy, Heinrich, L., Narboni '23

- Strongly disproved for large t: $\forall \varepsilon > 0$ and large enough t, $\exists G$ with a frozen t-coloring but no $\mathcal{K}_{\left(\frac{2}{3}+\varepsilon\right)t}$ -minor. This graph admits another t -coloring.
- Any graph with a quasi- K_t -minor has a $K_{\frac{t}{2}}$ -minor

Random construction of G_t

• Start with a clique on $V = \{a_1, b_1, \ldots a_t, b_t\}$

Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \ldots a_t, b_t\}$
- For all *i*, remove $a_i b_i$

Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \ldots a_t, b_t\}$
- For all *i*, remove $a_i b_i$
- For all i, j , pick independently at random an edge in $\{a_i,b_i\}\times \{a_j,b_j\}$ and remove it

Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \ldots a_t, b_t\}$
- For all *i*, remove $a_i b_i$
- For all i, j , pick independently at random an edge in $\{a_i,b_i\}\times \{a_j,b_j\}$ and remove it

Properties of G_t

- \bullet has a frozen *t*-coloring
- $\mathbb{P}(G_t$ has another *t*-coloring) $\underset{t\to\infty}{\longrightarrow} 1$
- $\mathbb{P}(G_t$ is $\mathcal{K}_{(\frac{2}{3}+\varepsilon)t}$ -minor free) $\underset{t\to\infty}{\longrightarrow} 1$

$\mathbb{P}(G_t$ is $\mathcal{K}_{(\frac{2}{3}+\varepsilon)t}$ -minor free) $\overset{\longrightarrow}{\longrightarrow} 1$

Sort the bags in a $\mathcal{K}_{(\frac{2}{3}+\varepsilon)t}$ -minor

- Bags of size $1 \to K_{p_1}$ simple minor
- Bags of size 2 \rightarrow K_{p_2} double minor
- \bullet Bags of size at least 3 \rightarrow K_{ρ_3} triple minor

$\mathbb{P}(G_t$ is $\mathcal{K}_{(\frac{2}{3}+\varepsilon)t}$ -minor free) $\overset{\longrightarrow}{\longrightarrow} 1$

Sort the bags in a $\mathcal{K}_{(\frac{2}{3}+\varepsilon)t}$ -minor

- Bags of size $1 \to K_{p_1}$ simple minor
- Bags of size 2 \rightarrow K_{p_2} double minor
- \bullet Bags of size at least 3 \rightarrow K_{ρ_3} triple minor

$\mathbb{P}(\mathit{G}_{t} \text{ is } \mathcal{K}_{(\frac{2}{3}+\varepsilon)t} \text{-minor free}) \underset{t \rightarrow \infty}{\longrightarrow} 1 \text{ because}$

- For all $\varepsilon_1 > 0$, $\mathbb{P}(G_t$ has no simple $\mathcal{K}_{\varepsilon_1 t}$ -minor) $\xrightarrow[t \to \infty]{} 1$
- For all $\varepsilon_2 > 0$, $\mathbb{P}(G_t$ has no double $\mathcal{K}_{\varepsilon_2 t}$ -minor) $\xrightarrow[t \to \infty]{} 1$
- G_t has no triple $K_{\frac{2}{3}t+1}$ -minor

For all $\varepsilon > 0$, $\mathbb{P}(G_t$ has no simple $\mathcal{K}_{\varepsilon t}$ -minor) $\xrightarrow[t \to \infty]{} 1$

- Simple K_p -minor = induced K_p
- Given $S \subset V$ of size p ,

$$
\mathbb{P}(S \text{ induces a } K_p) \leq \left(\frac{3}{4}\right)^{\binom{p}{2}}
$$

For all $\varepsilon > 0$, $\mathbb{P}(G_t$ has no simple $\mathcal{K}_{\varepsilon t}$ -minor) $\xrightarrow[t \to \infty]{} 1$

- Simple K_p -minor = induced K_p
- Given $S \subset V$ of size p,

$$
\mathbb{P}(S \text{ induces a } K_p) \leq \left(\frac{3}{4}\right)^{\binom{p}{2}}
$$

• By Union-Bound:

$$
\mathbb{P}(G_t \text{ has an induced } K_{\varepsilon t}) \leq {2t \choose \varepsilon t} \left(\frac{3}{4}\right)^{\varepsilon t \choose 2} \leq 2^{2t} \left(\frac{3}{4}\right)^{\varepsilon t \choose 2} \xrightarrow[t \to \infty]{} 0
$$

For all $\varepsilon > 0$, $\mathbb{P}(G_t$ has no double $\mathcal{K}_{\varepsilon t}$ -minor) $\xrightarrow[t \to \infty]{} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that $\forall i$, at most one of a_i, b_i is involved in S' .
- \bullet $G_t \backslash S'$: contract pairs in S' and remove the rest

For all $\varepsilon > 0$, $\mathbb{P}(G_t$ has no double $\mathcal{K}_{\varepsilon t}$ -minor) $\xrightarrow[t \to \infty]{} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that $\forall i$, at most one of a_i, b_i is involved in S' .
- \bullet $G_t \backslash S'$: contract pairs in S' and remove the rest
- $\bullet\;\;\forall (x_1,y_1),(x_2,y_2)\in S'.$ $\mathbb{P}(\exists \text{ an edge between }\{x_1,y_1\} \text{ and }\{x_2,y_2\})=1-(\frac{1}{4})$ $(\frac{1}{4})^4$
- $\bullet \ \ \mathbb{P}(\mathit{G}_{t}\backslash S^{\prime} \text{ is a clique}) = \big(1 (\frac{1}{4})\big)^{2}$ $(\frac{1}{4})^4)^{(\frac{|S'|}{2})}$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that $\forall i$, at most one of a_i, b_i is involved in S' .
- \bullet $G_t \backslash S'$: contract pairs in S' and remove the rest
- $\bullet\;\;\forall (x_1,y_1),(x_2,y_2)\in S'.$ $\mathbb{P}(\exists \text{ an edge between }\{x_1,y_1\} \text{ and }\{x_2,y_2\})=1-(\frac{1}{4})$ $(\frac{1}{4})^4$

•
$$
\mathbb{P}(G_t \setminus S' \text{ is a clique}) = (1 - (\frac{1}{4})^4)^{\binom{|S'|}{2}}
$$

- For $|S'| = \varepsilon' t$, at most $\binom{2t}{2\varepsilon'}$ $\left(\begin{smallmatrix} 2t\ 2\varepsilon' t \end{smallmatrix} \right) \cdot (2 \varepsilon t)! \leq (2t)^{2\varepsilon t}$ possibilities
- By Union-Bound:

$$
\mathbb{P}(\exists \text{ special } S',\textit{G}_t \backslash S' = \textit{K}_{\varepsilon' t}) \leq (2t)^{2\varepsilon' t} \left(1 - \frac{1}{4^4}\right)^{\binom{\varepsilon' t}{2}} \xrightarrow[t \to \infty]{} 0
$$

Reducing to the special case

- Let S be a double $K_{\epsilon t}$ -minor
- Greedy special $S' \subset S$: $\forall i$, if a_i and b_i are involved in S , remove the pair containing b_i

Reducing to the special case

- Let S be a double $K_{\epsilon t}$ -minor
- Greedy special $S' \subset S$: $\forall i$, if a_i and b_i are involved in S , remove the pair containing b_i
- $|S'| \geq \frac{\varepsilon}{3}t$ so take $\varepsilon' = \frac{\varepsilon}{3}$ $\frac{\varepsilon}{3}$:

 $\mathbb{P}(\exists \mathcal{S} \text{ a double } \mathcal{K}_{\varepsilon t} \text{-minor}) \leq \mathbb{P}(\exists \text{ a special } \mathcal{S}', \mathcal{G}_t \backslash \mathcal{S}' = \mathcal{K}_{\varepsilon' t}) \xrightarrow[t \to \infty]{} 0$

• What it is the infimum c such that for t large enough, there is G with a quasi K_t -minor but no K_{ct} -minor ? 1

$$
\frac{1}{2}\leq c\leq \frac{2}{3}
$$

• What it is the infimum c such that for t large enough, there is G with a quasi K_t -minor but no K_{ct} -minor ?

$$
\frac{1}{2} \leq c \leq \frac{2}{3}
$$

• Is there c' such that for every t, all the $c't$ -colourings of a graph with no K_t -minor are equivalent?

$$
\frac{3}{2} \le c'
$$
 and all $O(t\sqrt{\log(t)})$ -colorings are equivalent

• What it is the infimum c such that for t large enough, there is G with a quasi K_t -minor but no K_{ct} -minor ?

$$
\frac{1}{2} \leq c \leq \frac{2}{3}
$$

• Is there c' such that for every t, all the $c't$ -colourings of a graph with no K_t -minor are equivalent?

$$
\frac{3}{2} \le c' \quad \text{ and all } O(t\sqrt{\log(t)})\text{-colorings are equivalent}
$$

• What is the maximum t for which any graph with no K_t minor is t-recolorable ? $t \geq 5$

• What it is the infimum c such that for t large enough, there is G with a quasi K_t -minor but no K_{ct} -minor ?

$$
\frac{1}{2} \leq c \leq \frac{2}{3}
$$

• Is there c' such that for every t, all the $c't$ -colourings of a graph with no K_t -minor are equivalent?

$$
\frac{3}{2} \le c' \quad \text{ and all } O(t\sqrt{\log(t)})\text{-colorings are equivalent}
$$

• What is the maximum t for which any graph with no K_t minor is t-recolorable ? $t \geq 5$

Thanks !