Kempe recoloring version of Hadwiger's conjecture

Clément Legrand-Duchesne

LaBRI, Bordeaux

October 31, 2023

Joint work with Marthe Bonamy, Marc Heinrich and Jonathan Narboni

Maximal bichromatic connected component in ${\it G}$

Maximal bichromatic connected component in ${\it G}$

Maximal bichromatic connected component in ${\it G}$

Maximal bichromatic connected component in G

Usual questions

- Are any two k-colorings of a graph G equivalent ? Are all k-colorings equivalent to a χ(G)-coloring ?
- How many Kempe changes separate any two k-colorings ?
- Application to sampling : Does the corresponding Markov chain mix well ?

Graph minor

H is a minor of G if H can be obtained be deleting vertices, edges and contracting edges of G

Graph minor

H is a minor of G if H can be obtained be deleting vertices, edges and contracting edges of G

 K_t is a minor of G if and only if $V_1 \sqcup \cdots \sqcup V_t \subseteq V(G)$, with V_i connected and $G[V_1, \ldots, V_t] = K_t$

Wagner, Kuratowski 1930

A graph is planar iff K_5 -minor and $K_{3,3}$ -minor free

Appel, Haken 1976

If G is planar, then $\chi(G) \leq 4$

Robertson, Sanders, Seymour, Thomas 1997 Much simpler proof, but still computer assisted

Hadwiger's conjecture 1943

If G is K_t -minor free then $\chi(G) \le t - 1$ Proved for $1 \le t \le 6$, widely open for t > 6

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Meyniel 1978

All 5-colorings of a planar graph are Kempe-equivalent (tight)

Las Vergnas and Meyniel 1981

All 5-colorings of a K_5 -minor free graph are Kempe-equivalent

Conjecture 1 [Las Vergnas and Meyniel 1981]

All the *t*-colorings of a K_t -minor free graph are Kempe-equivalent

Conjecture 2 [Las Vergnas and Meyniel 1981]

All the *t*-colorings of a K_t -minor free graph are Kempe-equivalent to a (t-1)-coloring

Frozen coloring

 α is frozen if $\forall i,j,$ the graph induced by colors i and j is connected

Frozen coloring

 α is frozen if $\forall i,j,$ the graph induced by colors i and j is connected

Quasi-minor

 K_t is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_t$ such that $\forall i \neq j, G[V_i \cup V_j]$ is connected and $G[V_1, \ldots, V_t] = K_t$

Frozen coloring

 α is frozen if $\forall i,j,$ the graph induced by colors i and j is connected

Quasi-minor

 K_t is quasi-minor of G if there exists $V_1 \sqcup \cdots \sqcup V_t$ such that $\forall i \neq j, G[V_i \cup V_j]$ is connected and $G[V_1, \ldots, V_t] = K_t$

 K_t -minor \Rightarrow quasi K_t -minor

Frozen *t*-coloring \Rightarrow quasi K_t -minor

Clément Legrand

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- no frozen *t*-coloring
- only one *t*-coloring up to color permutation \rightsquigarrow Hadwiger's conjecture is false

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- no frozen *t*-coloring
- only one *t*-coloring up to color permutation \rightsquigarrow Hadwiger's conjecture is false

Conjecture 3 [Las Vergnas and Meyniel 1981]

No K_t -minor \Rightarrow No quasi K_t -minor \Rightarrow No frozen *t*-coloring

Motivation

If G has no K_t minor and all its t-colorings are Kempe equivalent then either

- no frozen *t*-coloring
- only one *t*-coloring up to color permutation ~> Hadwiger's conjecture is false

```
Conjecture 3 [Las Vergnas and Meyniel 1981]
No K_t-minor \Rightarrow No quasi K_t-minor \Rightarrow No frozen t-coloring
```

```
Conjecture 3 holds for

[Las Vergnas and Meyniel '81] t \le 5

[Jørgensen '94] t = 8

[Song and Thomas '06] t = 9

[Kriesell '21] t = 10
```

To sum up

No K_t -minor implies ...

1. *t*-recolorable
$$\land \neg$$
 3. No quasi- K_t -minor \longrightarrow Hadwiger's conjecture is false
Assuming Hadwiger
2. Every *t*-coloring is equivalent to a $(t - 1)$ -coloring

No K_t -minor implies ...

1. *t*-recolorable
$$\land \neg$$
 3. No quasi- K_t -minor \longrightarrow Hadwiger's conjecture is false
Assuming Hadwiger
2. Every *t*-coloring is equivalent to a $(t - 1)$ -coloring

Bonamy, Heinrich, L., Narboni '23

Strongly disproved for large t: ∀ε > 0 and large enough t, ∃G with a frozen t-coloring but no K_{(²/₃+ε)t}-minor. This graph admits another t-coloring.

No K_t -minor implies ...

1. *t*-recolorable
$$\land \neg$$
 3. No quasi- K_t -minor \longrightarrow Hadwiger's conjecture is false
Assuming Hadwiger
2. Every *t*-coloring is equivalent to a $(t-1)$ -coloring

Bonamy, Heinrich, L., Narboni '23

- Strongly disproved for large t: ∀ε > 0 and large enough t, ∃G with a frozen t-coloring but no K_{(²/₃+ε)t}-minor. This graph admits another t-coloring.
- Any graph with a quasi- K_t -minor has a $K_{\frac{t}{2}}$ -minor

Random construction of G_t

• Start with a clique on $V = \{a_1, b_1, \dots, a_t, b_t\}$

Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \dots a_t, b_t\}$
- For all *i*, remove *a*_{*i*}*b*_{*i*}

Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \dots a_t, b_t\}$
- For all *i*, remove *a*_{*i*}*b*_{*i*}
- For all *i*, *j*, pick independently at random an edge in $\{a_i, b_i\} \times \{a_j, b_j\}$ and remove it

Random construction of G_t

- Start with a clique on $V = \{a_1, b_1, \dots a_t, b_t\}$
- For all *i*, remove *a_ib_i*
- For all *i*, *j*, pick independently at random an edge in $\{a_i, b_i\} \times \{a_j, b_j\}$ and remove it

Properties of G_t

- has a frozen *t*-coloring
- $\mathbb{P}(G_t \text{ has another } t\text{-coloring}) \xrightarrow[t \to \infty]{} 1$
- $\mathbb{P}(G_t \text{ is } K_{(\frac{2}{3}+\varepsilon)t}\text{-minor free}) \xrightarrow[t \to \infty]{} 1$

$\mathbb{P}(G_t \text{ is } K_{(\frac{2}{3}+\varepsilon)t}\text{-minor free}) \xrightarrow[t \to \infty]{} 1$

Sort the bags in a $K_{(\frac{2}{3}+\varepsilon)t}$ -minor

- Bags of size $1 \rightarrow K_{p_1}$ simple minor
- Bags of size $2 \rightarrow K_{p_2}$ double minor
- Bags of size at least $3 \rightarrow K_{p_3}$ triple minor

 $\mathbb{P}(G_t \text{ is } K_{(\frac{2}{3}+\varepsilon)t}\text{-minor free}) \xrightarrow[t \to \infty]{} 1$

Sort the bags in a $K_{(\frac{2}{3}+\varepsilon)t}$ -minor

- Bags of size $1 \rightarrow K_{p_1}$ simple minor
- Bags of size $2 \rightarrow K_{p_2}$ double minor
- Bags of size at least $3 \rightarrow K_{p_3}$ triple minor

$\mathbb{P}(G_t \text{ is } K_{(\frac{2}{3}+\varepsilon)t}\text{-minor free}) \xrightarrow[t \to \infty]{} 1 \text{ because}$

- For all $\varepsilon_1 > 0$, $\mathbb{P}(G_t \text{ has no simple } K_{\varepsilon_1 t} \text{-minor}) \xrightarrow[t \to \infty]{} 1$
- For all $\varepsilon_2 > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon_2 t}\text{-minor}) \xrightarrow[t \to \infty]{} 1$
- G_t has no triple $K_{\frac{2}{2}t+1}$ -minor

For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no simple } K_{\varepsilon t} \text{-minor}) \xrightarrow[t \to \infty]{} 1$

- Simple K_p -minor = induced K_p
- Given $S \subset V$ of size p,

$$\mathbb{P}(S ext{ induces a } \mathcal{K}_{
ho}) \leq \left(rac{3}{4}
ight)^{\binom{
ho}{2}}$$

For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no simple } K_{\varepsilon t} \text{-minor}) \xrightarrow[t \to \infty]{} 1$

- Simple K_p -minor = induced K_p
- Given $S \subset V$ of size p,

$$\mathbb{P}(S ext{ induces a } \mathcal{K}_{p}) \leq \left(rac{3}{4}
ight)^{\binom{p}{2}}$$

• By Union-Bound:

$$\mathbb{P}(G_t \text{ has an induced } \mathcal{K}_{\varepsilon t}) \leq \binom{2t}{\varepsilon t} \binom{3}{4}^{\binom{\varepsilon t}{2}}$$
$$\leq 2^{2t} \left(\frac{3}{4}\right)^{\binom{\varepsilon t}{2}}$$
$$\xrightarrow[t \to \infty]{} 0$$

For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t}\text{-minor}) \xrightarrow[t \to \infty]{} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that ∀i, at most one of a_i, b_i is involved in S'.
- $G_t \setminus S'$: contract pairs in S' and remove the rest

For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t} \text{-minor}) \xrightarrow[t \to \infty]{} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that ∀i, at most one of a_i, b_i is involved in S'.
- $G_t \setminus S'$: contract pairs in S' and remove the rest
- $\forall (x_1, y_1), (x_2, y_2) \in S'$, $\mathbb{P}(\exists$ an edge between $\{x_1, y_1\}$ and $\{x_2, y_2\}) = 1 (\frac{1}{4})^4$
- $\mathbb{P}(G_t \setminus S' \text{ is a clique}) = \left(1 \left(\frac{1}{4}\right)^4\right)^{\binom{|S'|}{2}}$

For all $\varepsilon > 0$, $\mathbb{P}(G_t \text{ has no double } K_{\varepsilon t} \text{-minor}) \xrightarrow[t \to \infty]{} 1$

A special case of double-minor

- Let S' be a set of pairwise disjoint pairs of vertices, such that ∀i, at most one of a_i, b_i is involved in S'.
- $G_t \setminus S'$: contract pairs in S' and remove the rest
- $\forall (x_1, y_1), (x_2, y_2) \in S'$, $\mathbb{P}(\exists$ an edge between $\{x_1, y_1\}$ and $\{x_2, y_2\}) = 1 (\frac{1}{4})^4$

•
$$\mathbb{P}(G_t ackslash S' ext{ is a clique}) = \left(1 - (rac{1}{4})^4\right)^{\binom{|S'|^2}{2}}$$

- For $|S'| = \varepsilon' t$, at most $\binom{2t}{2\varepsilon' t} \cdot (2\varepsilon t)! \le (2t)^{2\varepsilon t}$ possibilities
- By Union-Bound:

$$\mathbb{P}(\exists \text{ special } S', G_t \backslash S' = K_{\varepsilon't}) \leq (2t)^{2\varepsilon't} \left(1 - \frac{1}{4^4}\right)^{\binom{\varepsilon't}{2}} \xrightarrow[t \to \infty]{t \to \infty} 0$$

Reducing to the special case

- Let S be a double K_{et}-minor
- Greedy special $S' \subset S$: $\forall i$, if a_i and b_i are involved in S, remove the pair containing b_i

Reducing to the special case

- Let S be a double K_{et}-minor
- Greedy special $S' \subset S$: $\forall i$, if a_i and b_i are involved in S, remove the pair containing b_i
- $|S'| \ge \frac{\varepsilon}{3}t$ so take $\varepsilon' = \frac{\varepsilon}{3}$:

$$\mathbb{P}(\exists S \text{ a double } \mathcal{K}_{\varepsilon t}\text{-minor}) \leq \mathbb{P}(\exists \text{ a special } S', \mathcal{G}_t \backslash S' = \mathcal{K}_{\varepsilon' t}) \xrightarrow[t \to \infty]{} 0$$

• What it is the infimum c such that for t large enough, there is G with a quasi K_t-minor but no K_{ct}-minor ?

$$\frac{1}{2} \le c \le \frac{2}{3}$$

• What it is the infimum c such that for t large enough, there is G with a quasi K_t-minor but no K_{ct}-minor ?

$$\frac{1}{2} \le c \le \frac{2}{3}$$

• Is there c' such that for every t, all the c't-colourings of a graph with no K_t -minor are equivalent?

$$rac{3}{2} \leq c'$$
 and all $O(t\sqrt{\log(t)})$ -colorings are equivalent

• What it is the infimum c such that for t large enough, there is G with a quasi K_t-minor but no K_{ct}-minor ?

$$\frac{1}{2} \le c \le \frac{2}{3}$$

• Is there c' such that for every t, all the c't-colourings of a graph with no K_t-minor are equivalent?

$$rac{3}{2} \leq c'$$
 and all $O(t\sqrt{\log(t)})$ -colorings are equivalent

• What is the maximum t for which any graph with no K_t minor is t-recolorable ? $t \ge 5$

• What it is the infimum c such that for t large enough, there is G with a quasi K_t-minor but no K_{ct}-minor ?

$$\frac{1}{2} \le c \le \frac{2}{3}$$

• Is there c' such that for every t, all the c't-colourings of a graph with no K_t-minor are equivalent?

$$rac{3}{2} \leq c'$$
 and all $O(t\sqrt{\log(t)})$ -colorings are equivalent

• What is the maximum t for which any graph with no K_t minor is t-recolorable ? $t \geq 5$

Thanks !