The structure of quasi-transitive graphs avoiding a minor

Clément Legrand-Duchesne

LaBRI, Bordeaux

October 13, 2023

Joint work with Louis Esperet and Ugo Giocanti.

Clément Legrand

Wang's tiling problem

Entry: A finite family of tiles \mathcal{T} **Question:** Does there exist a tiling of \mathbb{Z}^2 using tiles of \mathcal{T} ?

Wang's tiling problem

Entry: A finite family of tiles \mathcal{T} **Question:** Does there exist a tiling of \mathbb{Z}^2 using tiles of \mathcal{T} ?

Theorem

- Wang's tiling problem is undecidable.
- There exist aperiodic sets of tiles

Generalization of Wang's dominos

What about tiling other spaces ?

On \mathbb{Z} , \exists a tiling $\Leftrightarrow \exists$ a periodic tiling, so the problem is decidable.

Generalization of Wang's dominos

What about tiling other spaces ?

On $\mathbb{Z},\,\exists$ a tiling \Leftrightarrow \exists a periodic tiling, so the problem is decidable.

Alternative definition of the problem

Entry: *k* colors and a finite set of forbidden patterns \mathcal{F} **Question**: Is there a coloring of \mathbb{Z}^2 that avoids \mathcal{F} ?

Generalization of Wang's dominos

What about tiling other spaces ?

On $\mathbb{Z},\,\exists$ a tiling \Leftrightarrow \exists a periodic tiling, so the problem is decidable.

Alternative definition of the problem

Entry: *k* colors and a finite set of forbidden patterns \mathcal{F} **Question**: Is there a coloring of \mathbb{Z}^2 that avoids \mathcal{F} ?

Overview and intuition on different objects

- The domino problem
- Infinite graphs with lots of symmetries
- Tree-decompositions, treewidth and minors
- A small bit of group theory

Natural generalization of \mathbb{Z}^d : Cayley graphs

Group presentation of $\Gamma = \langle \Sigma | R \rangle$

- A finite set of generators and their inverses: $\Sigma = \{a, a^{-1}, b, b^{-1} \ldots\}$
- A set of relations R = {aba⁻¹b⁻¹} finitely presented if R is finite
- The elements are the words on Σ , quotiented by patterns in R

Natural generalization of \mathbb{Z}^d : Cayley graphs

Group presentation of $\Gamma = \langle \Sigma | R \rangle$

- A finite set of generators and their inverses: $\Sigma = \{a, a^{-1}, b, b^{-1} \dots\}$
- A set of relations R = {aba⁻¹b⁻¹} finitely presented if R is finite
- The elements are the words on Σ , quotiented by patterns in R

Cayley graphs

Vertices are the elements of the group Edges are labelled by $\boldsymbol{\Sigma}$

Some examples of Cayley graphs

• The infinite *d*-valent trees and their blow-ups

Some examples of Cayley graphs

• The infinite *d*-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all $u, v, \exists \phi \in Aut(G), u = \phi(v)$
- Strong connections with expanders

Some examples of Cayley graphs

The infinite d-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all $u, v, \exists \phi \in Aut(G), u = \phi(v)$
- Strong connections with expanders

Conjecture [Ballier and Stein 2018]

The domino problem is decidable in a group $\Gamma \Leftrightarrow \Gamma$ is virtually-free

Some examples of Cayley graphs

• The infinite *d*-valent trees and their blow-ups

Strong structural properties of Cayley graphs

- Regular
- Transitive: For all $u, v, \exists \phi \in Aut(G), u = \phi(v)$
- Strong connections with expanders

Conjecture [Ballier and Stein 2018]

The domino problem is decidable in a group $\Gamma \Leftrightarrow \Gamma\,$ has a Cayley graph G of bounded treewidth

A tree decomposition of G is a tree T whose nodes are bags $X_i \subset V(G)$ s. t.

- $\bigcup_i X_i = V(G)$
- $\forall u \in V(G)$ the subgraph of nodes containing u is connected
- $\forall uv \in E(G), \exists X_i, \{u, v\} \subset X_i$

- A tree decomposition of G is a tree T whose nodes are bags $X_i \subset V(G)$ s. t.
 - $\bigcup_i X_i = V(G)$
 - $\forall u \in V(G)$ the subgraph of nodes containing u is connected
 - $\forall uv \in E(G), \exists X_i, \{u, v\} \subset X_i$

A graph has treewidth at most k if it admits a tree decomposition with bags of size at most k + 1

Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Unbounded treewidth

Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Unbounded treewidth

Intuition behind the conjecture

Bounded treewidth \Rightarrow tree-like structure with periodic colorings $~\checkmark$

Clément Legrand

Treewidth of infinite graphs

Bounded treewidth

Unbounded treewidth

Unbounded treewidth

Intuition behind the conjecture

Bounded treewidth \Rightarrow tree-like structure with periodic colorings \checkmark Unbounded treewidth \Rightarrow infinite grid-like workspace ?

Clément Legrand

Let T be a tree decomposition of G, Adhesion set: $X_i \cap X_j$ for some $i \neq j$ Adhesion: supremum size of an adhesion set

Let T be a tree decomposition of G, Adhesion set: $X_i \cap X_j$ for some $i \neq j$ Adhesion: supremum size of an adhesion set Torso of a bag X_i : graph $G[X_i]$ s. t.

•
$$G[X_i] \subset G[X_i]$$

• add all edges uv s. t. u, v in an adhesion of X_i and connected by a path in $G \setminus E[X_i]$.

H minor of G: H can be obtained from G by contracting edges and by deleting vertices and edges.

Proposition

Having bounded treewidth is a minor closed property

Why is G H-minor free ?

Let G be a H-minor-free graph. Then G is piecewise

- too thin to contain *H*
- almost embeddable on surfaces too simple to contain H as a minor.

Why is G H-minor free ?

Let G be a H-minor-free graph. Then G is piecewise

- too thin to contain *H*
- almost embeddable on surfaces too simple to contain H as a minor.

Robertson, Seymour 2003

Let H be a fixed graph, $\exists k$, s. t. any H-minor free graph G admits a tree-decomposition with :

- adhesion is at most k,
- torsos are "almost" embeddable in a surface in which H does not embed (too low genus)

Diestel, Thomas 1999

The same holds for **locally-finite** graphs G that exclude some finite minor.

Clément Legrand

G quasi-transitive: \exists a *t*-coloring of *G*, s. t. $\forall u, v$ colored identically, $\exists \phi \in Aut(G)$ with $u = \phi(v)$

(V(G) has finitely many orbits under the action of Aut(G))

G quasi-transitive: \exists a *t*-coloring of *G*, s. t. $\forall u, v$ colored identically, $\exists \phi \in Aut(G)$ with $u = \phi(v)$

(V(G) has finitely many orbits under the action of Aut(G))

G quasi-transitive: \exists a *t*-coloring of *G*, s. t. $\forall u, v$ colored identically, $\exists \phi \in Aut(G)$ with $u = \phi(v)$

(V(G) has finitely many orbits under the action of Aut(G))

Canonical tree decomposition: $\forall \phi \in Aut(G), \phi$ maps bags on other bags $(Aut(G) \text{ induces an action on } T \text{ s. t. } \forall \phi, \forall i, \phi(X_i) = X_{i \cdot \phi})$

Canonical tree decomposition: $\forall \phi \in Aut(G), \phi$ maps bags on other bags $(Aut(G) \text{ induces an action on } T \text{ s. t. } \forall \phi, \forall i, \phi(X_i) = X_{i \cdot \phi})$

Esperet, Giocanti, L. 2023

Let G be a quasi-transitive locally finite graph G avoiding the countable clique as a minor. Then G admits a **canonical** tree decomposition s. t.

Theorem 1 torsos are finite or planar

Canonical tree decomposition: $\forall \phi \in Aut(G), \phi$ maps bags on other bags $(Aut(G) \text{ induces an action on } T \text{ s. t. } \forall \phi, \forall i, \phi(X_i) = X_{i \cdot \phi})$

Esperet, Giocanti, L. 2023

Let G be a quasi-transitive locally finite graph G avoiding the countable clique as a minor. Then G admits a **canonical** tree decomposition s. t.

Theorem 1 torsos are finite or planar

- Theorem 2 adhesion is at most 3
 - torsos are minors of G
 - torsos are planar or have bounded treexidth

Hadwiger number of G: supremum of the sizes of its complete minors.

Hadwiger number of G: supremum of the sizes of its complete minors.

Thomassen 1992

Every locally finite quasi-transitive 4-connected graph attains its Hadwiger number.

Hadwiger number of G: supremum of the sizes of its complete minors.

Thomassen 1992

Every locally finite quasi-transitive 4-connected graph attains its Hadwiger number.

Esperet, Giocanti, L. 2023

Every locally finite quasi-transitive graph attains its Hadwiger number.

" K_{∞} minor free $\Rightarrow K_t$ minor free for some t"

- Ray: infinite one-way path in G
- Two rays r₁ and r₂ are equivalent if ∀ finite subgraph C of G,
 ∃ a connected component of G \ C intersecting r₁ an infinite number of time, and r₂ too
- End of G: equivalence class of rays

- Ray: infinite one-way path in G
- Two rays r₁ and r₂ are equivalent if ∀ finite subgraph C of G,
 ∃ a connected component of G \ C intersecting r₁ an infinite number of time, and r₂ too
- End of G: equivalence class of rays
- Thickness of an end: supremum in $\mathbb{N}\cup\{\infty\}$ of the number of pairwise disjoint rays living in it

- Ray: infinite one-way path in G
- Two rays r₁ and r₂ are equivalent if ∀ finite subgraph C of G,
 ∃ a connected component of G \ C intersecting r₁ an infinite number of time, and r₂ too
- End of G: equivalence class of rays
- Thickness of an end: supremum in $\mathbb{N}\cup\{\infty\}$ of the number of pairwise disjoint rays living in it

Hopf 1944 & Diestel, Jung, Möller 1993

A quasi-transitive graph has 0,1,2 or an infinite number of ends

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of G \ C
- A graph G is vertex-accessible if there is a k < ∞ s. t. any two ends can be separated by a set of size k.

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of G \ C
- A graph G is vertex-accessible if there is a k < ∞ s. t. any two ends can be separated by a set of size k.

Dunwoody 2007

Planar quasi-transitive graphs are vertex-accessible.

- A finite set C separates two ends if they have an infinite number of vertices in distinct components of G \ C
- A graph G is vertex-accessible if there is a k < ∞ s. t. any two ends can be separated by a set of size k.

Dunwoody 2007

Planar quasi-transitive graphs are vertex-accessible.

Esperet, Giocanti, L. 2023

Quasi-transitive graphs K_∞ -minor free graphs are vertex-accessible.

 Γ a finitely generated group. Γ has more than one end \Leftrightarrow Γ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

 Γ accessible: Stallings' inductive decomposition terminates

 Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

 Γ accessible: Stallings' inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible

 Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

 Γ accessible: Stallings' inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible

 $\Gamma = \langle \Sigma | R \rangle$ finitely presented: R finite

Droms 2006 Finitely generated planar groups are finitely presented

 Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

Γ accessible: Stallings' inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible

 $\Gamma = \langle \Sigma | R \rangle$ finitely presented: R finite

Droms 2006 Finitely generated planar groups are finitely presented Dunwoody 1985 Finitely presented groups are accessible

 Γ a finitely generated group. Γ has more than one end $\Leftrightarrow \Gamma$ can be decomposed as a product of two groups (amalgamated free-product or HNN-extension over a finite group)

Definition

 Γ accessible: Stallings' inductive decomposition terminates

Thomassen, Woess 1993 A group is accessible \Leftrightarrow one of its Cayley graphs is vertex-accessible

 $\Gamma = \langle \Sigma | R \rangle$ finitely presented: *R* finite

Droms 2006 Finitely generated planar groups are finitely presented Dunwoody 1985 Finitely presented groups are accessible

Esperet, Giocanti, L. 2023 Finitely generated K_∞ minor free groups are accessible and finitely presented

Aubrun, Barbieri, Moutot 2019

For any $g \ge 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Aubrun, Barbieri, Moutot 2019

For any $g \ge 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Bungaard, Nielsen 46 & Fox 52

One-ended planar groups contain the fundamental group of a closed orientable surface as a subgroup of finite index

Aubrun, Barbieri, Moutot 2019

For any $g \ge 1$, the fundamental group of the closed orientable surface of genus g has undecidable domino problem

Bungaard, Nielsen 46 & Fox 52

One-ended planar groups contain the fundamental group of a closed orientable surface as a subgroup of finite index

Esperet, Giocanti, L. 2023

The domino conjecture holds in groups with no K_∞ -minor

- Among quasi-transitive graphs, planar graphs and graphs excluding a minor are much alike
- For a quasi-transitive graph, K_{∞} -minor free $\Rightarrow K_t$ minor free for some t

- Among quasi-transitive graphs, planar graphs and graphs excluding a minor are much alike
- For a quasi-transitive graph, K_{∞} -minor free $\Rightarrow K_t$ minor free for some t

Thanks!